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Hall phenomena in an electrically conducting fluid with a vari-

able magnetic field were considered in [1]. In that paper the basic
characteristics of the above-mentioned phenomena are determined,
with certain unimportant constraints, for the case of fluid motion
along a channel of rectangular cross section in a traveling magne
tic field. The magnetic Reynolds number was assumed to be small,
and a solution was given for the induction field in the form of a
series in powers of the indicated parameter. Quantitative estimates
based on the data of [1] are impossible in the case of relatively high
electrical conductivity of the fluid, although certain conclusions of

a qualitative nature remain valid, There is thus reason to consider the
case of high magnetic Reynolds numbers. This will also. allow a fuller
picture of the characteristic Hall effect phenomena to be constructed
for a variable magnetic field.

e

We make the following assumptions: the fluid
flows along a channel of rectangular cross section,
the channel walls are nonconducting, the fluid mot-
ion is constant, ion slip does not occur, the external
magnetic field is created by windings located on the
inner surfaces of an inductor, i.e., on the z = 0 and
z =9 planesg (9 is the channel height), the linear
load of each of the windings has one component in the
form of a traveling wave.

We shall determine the induction field.

We isolate an infinitely thin layer of fluid along
the channel axis z =8/2, Assuming

by = @ (2) 1 (8, 2, 1),
9 (2) = ctia (2— 2 8) + s (2 — /o0 + . .

(i==x, y).

We can write the equation for the Z component of the
induction field for this layer as

L(B) = Ah—Byeos (t —a) 52 —e [ 55 + (1—9) 52| —
—escos(t—ux) =0, (1)

Here A is the Laplace operator, h is the induc-
tion field strength, ﬁm is the Hall parameter for
induction, equal to the amplitude of the traveling
wave field, s is the slip, £ the analog of the mag-
netic Reynolds number.

Then equation (1) is considered in the region

O<t<<)x Q(—pn<z<pn 0y <d

under the conditions

hiyeeoy = Riy=a) = 0,  Ia—pr) = Ai=—pn)
Oh oh
== k(f.—:g) =0 .
ax(:x:p:) ax(x:—«}';ﬁ) ’

Thus transient processes in the inductor circuits
are not taken into account and it is assumed that the

traveling wave is formed at the instant the inductor
contact is made.

To solve equation (1), we make use of a method
similar to that of Galerkin, as modified by M. I.
Vishik for application to mixed boundary value prob-
lems with time [2]. Weset
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The functions

sin (mny / d) cos nz, sin (mmny [ d), sinnx

(m:i_,Z,..‘.; n=20,1,2,..)

form a complete linearly independent system of ele~
ments in the corresponding Hilbert space. Conse-
quently, for m — ®; n — *©, h® should coincide with
the solution of equation (1).

In (2) the quantities a n ) b, () are unknown.
To obtain the corresponding equations we carry out
the scalar multiplication of L(h°) by the coor-
dinate functions in the region 2, We have
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. 28,05 m s
-+ [ak_(n-l) (t) = Qg (n+1) (t)] sinf} = oy [(—‘1) —1}sin¢
(m=1,2,..;0=0,1,2,...), (4)
for initial conditions
amn (0) =0,  bun(0)=0.
Here
Zmn == (ma AP 4-n?, B=8n/d, Sm=1, Bmumen=0.

Further, settling processes are not considered.
In this case, in (3) and (4) we can discard all equa-
tions in which the sum of the indices associated
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with a (t) and b (t) is an odd number.

Equations (3) and (4) were solved numerically on
a digital computer. The table gives values (rounded)
of the variables at a series of points for the case
€=49, g = 5,57, s =—1. In the extreme righi-hand
column the approximate expression for the variables
is given.

The fact that ayy, (t) and by (t) have an explici-
tly expressed sinusoidal character allows the pro-
cedure for determining the induction field to be
simplified. If strict requirements of accuracy are
not imposed, we may immediately set

Qg (t) = const, i (B) = Qun 510 {1 — P},

bmn () —- — bpa €08 (AL — Pyun) (5)

in (2)

In this case, we can obtain algebraic equations,
instead of a system of ordinary differential equa-
tions with periodic coefficients, by carrying out a
scalar multiplication of the operator L (h°®) by the
coordinate functions in the region Q X (0 <t < 27),
We have

& .
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Here as in (3) and (4) the sums of the indices of
f and g are even numbers.

Fig. 1

Hence, for the case mentioned above, we obtain

an = — 0.374, 43y — — 0.034, asp = —0.0894;,

Y =T0.5°,  Pn =83,  thp=50°.

ag = 0.0435

Thus both methods give good agreement tor an
and poor agreement for ¥ .. This is confirmed by
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data for other values of ¢, 8 and s, which are not
given here. The marked divergence of the strength
of the double frequency field should not have much
effect, since this field is small in comparison with
the basic field (ayy).

The influence of the magnetic Reynolds number
on the distribution of the induction field may easily
be estimated from equations (6) and (7).

As the magnetic Reynolds number increases, the
zero and double frequency field decreases; on the
other hand, the basic frequency field (23,} increases.
Figure 1 gives the amplitude values of the fields
referred to for 5 =5.57 and 8 = —1 (curves 1, 2, and
3 correspond to 4y, a3 and ays).

Fig. 2

The magnetic Reynolds number exerts a marked
effect on the field distribution in the fluid.

The field distribution is less symmetric for low
values of the Reynolds number, and, in this sense,
the Hall effect is stronger (Fig. 2; € = 0.49, B = 5.57,
8 = -1, layy = 0,033, curve 1 corresponds tot —-x = 0,
curve 2 corresponds to the value t — x = /2,

Fig. 3

The field distribution becomes more symmeiric
at high values of the magnetic Reynolds number,
since the zero and double frequency components are
less, but the corresponding curves hecome more
flattened as a result of the increased basic fre~
quency component (as) (Fig. 3: £€=49, =557, 5 =
=-1, la] =1.23, curve 1 corresponds to t — x = 0,
curve 2 to t — X = 7/2). In the first case (Fig. 2)
the field strength for t - x = 0 is considerably
greater than for t —x = 7/2; in the second case,
the opposite state of affairs is observed. This is

trad | 186.6 188.2 189.7 191.3 192.9
a; | —0.0052| 0.372 0.0206{ —0.3719 0.001 —0.372 sin (t — 75°)
by | —0.371 0.01181 0.3711 0.0037 t+ —0,374 0.371 cos{t — 75°)
as | —0.006 0.0336 0.0074 | —0,0339 | —0.0054 | —0.0335 sin (t — 85.5%)
by | —0.0348! —0.00651 0.0344 0.0079 | --0.0348 0.0345 cos (t — 85.5°)
ax |—0.0884|—0.0879| —0.0884| —0.0878 | —0.0883 | —0.0883
Az 0.05791 —0.04381 0.0571| —0.0432 0.0582 0.007-1 0.05 sin (2t — 68°)
bog | —0.0004 0.0074 | —0.0082 0.0124 | —0,0023 0.003-—0.05 cos (2t — 68°)
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basically connected with the substantial difference
of time phases ¢mpas a consequence of the dif-
ferent q of the medium in the cases mentioned.

It was assumed above that the amplitude of the
external field is constant. Consequently, it is also
assumed that the inductor is considerably wider
than the channel. However, cases where these di-
mensions are either the same, or differ only in-
significantly, are more realisitc. Here the exter-
nal field does not remain constant over the channel
width, and the distribution curve for this field is a
symmetric function with respect to the channel axis.

It can easily be shown that it is possible to go
over to equations (6) and (7) in this case also.
Setting

@ (y) = Daw 2y — )",

where @ (y) is the amplitude of the external field,
a,i are coefficients depending on the inductor de-
sign and the type of exciting winding, we obtain

d
-

S(P(!/)-“in m:‘?/ dy = N [(—D"—1].

0

Thus the factor N must be introduced in the right-
hand side of equations (3) and (4). Since this factor
is bounded, one can expect conditions (5) to be sat-
isfied, if only approximately. This means that equa-
tions (6) and (7) can be applied even when the chan-
nel and inductor are of the same width, provided we
set émy = N.
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